

# **STIRLING** CRYOGENICS

Re-liquefaction of Hydrogen / Zero Boil-off System



# **Stirling Cryogenics B.V.**

- Main product lines:
  - Range of Stirling Cryogenerators: on-site production of 18 to 200K cooling power
  - Range of CryoFans: Several types of gas pumps for closed cycle transmission of cooling power

#### STIRLING CRYOGENICS

# **Re-Liquefaction of Hydrogen**

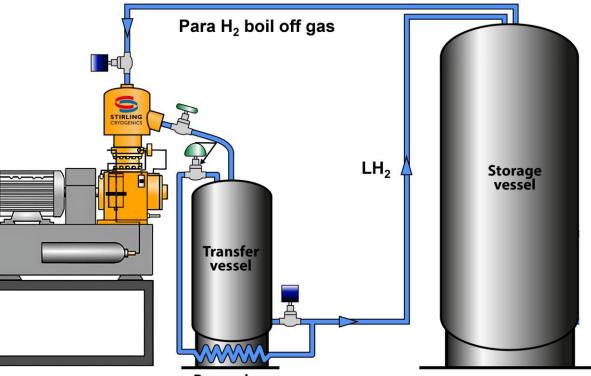
- Two liquefaction concepts:
  - Inside Stirling Cryogenerator cold head via a transer tank
  - Inside LH<sub>2</sub> vessel by flow of cold He from Stirling Cryogenerator

# Stirling Hydrogen Re-Liquefaction System Features



- The range of capacities we offer is from 12 up to 350 kg/day in one system, large capacities by multiple systems
- Smaller systems up to 100 kg/day can be placed in a plant room, but can also be offered as containerized system
- Larger systems are offered containerized as standard
- To allow for future growth, systems can be supplied for current size but already built for future extension, allowing later addition of Cryogenerators and hence capacity extension
- Cryogenerators can be stopped and started regularly, allowing to stop part of them in case less GH<sub>2</sub> boil-off is generated
  With increasing GH<sub>2</sub> boil-off, more Cryogenerators are started.
- Cool-down time to liquefaction from warm start is 20 minutes, shorter after short stops
- In smaller systems, liquefaction capacity can be varied by rpm depending GH<sub>2</sub> boil-off

# Hydrogen Re-Liquefaction Capacity

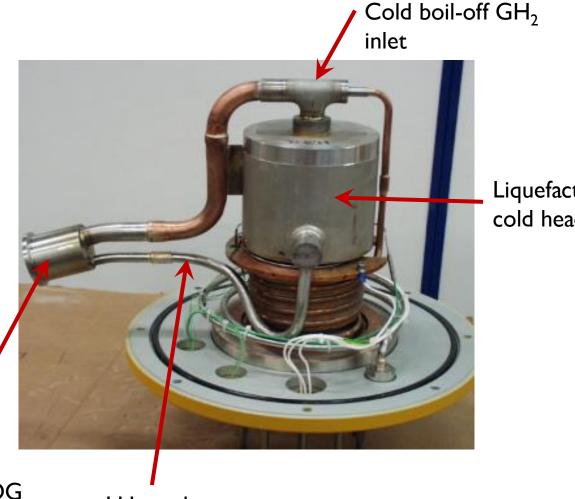



- Capacity is based on 100% para hydrogen boil-off gas at 30K, so heated 7K in the transfer lines
- Vessel pressure at 1 barg / liquefaction temperature is 22.8 K
- dH is 542.8 27.6 = 515.2 kJ/kg
- Available cooling power per SPC-4T is 300W at the second stage
- Depending re-liquefaction concept and piping geometry etc, re-liquefaction capacity is ~50 kg/day, requiring 37 kW input power plus 15 kW for water chiller
- The SPC-1T will do ~12 kg/day, requiring 10 kW input power plus 4 kW for water chiller
- $\rightarrow$  This results in a power to kg LH<sub>2</sub> ratio of 25 kWh/kg



# Hydrogen Re-Liquefaction in Stirling Cold-head

- Boil-off gas, being 100% para H<sub>2</sub> from the storage vessel is fed to the Cryogenerator
- Re-liquefaction by second stage cold head, no 80K pre-cooling required
- LH<sub>2</sub> produced is stored in a transfer vessel
- When full, gas feed valve closes and bottom valve opens
- LH<sub>2</sub> is pressurized and transferred to the storage vessel




Pressurizer

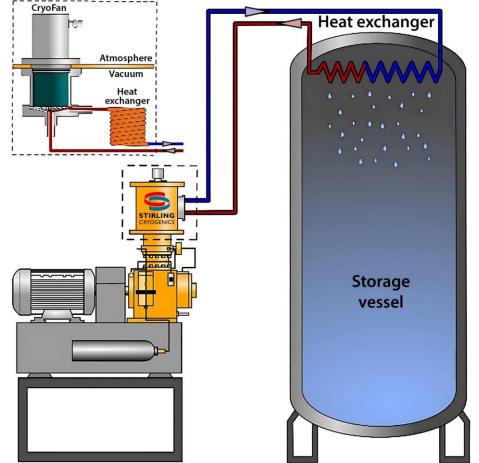
# Hydrogen Re-Liquefaction inside Stirling cold head



- I-Cylinder, 2-Stage Cold Head for LH<sub>2</sub>
- Re-liquefaction of boil-off gas in second stage cold head
- Two phase flow pipe connection to transfer vessel
- Liquid produced drops in transfer vessel
- From here batch-wise push over to main vessel



Two phase  $LH_2$  / BOG connection to  $LH_2$  vessel


LH<sub>2</sub> outlet

Liquefaction cold head



#### Hydrogen Re-Liquefaction in a vessel

- In case it is preferred to re-liquefy the H<sub>2</sub> gas inside the vessel, e.g. for classification reasons, this can be achieved by a flow of cold He coming from the Cryogenerator.
- The He flow is driven in a loop by a Stirling CryoFan, thermally connecting the Cryogenerator with the heat-exchanger to be cooled.
- A heat-exchanger @ 20K inside of the LH<sub>2</sub> vessel will re-liquefy the GH<sub>2</sub>.
- A second heat-exchanger can be placed in the liquid, to cool this and prevent evaporation.
- With the Cryogenerator in a safe area, no ATEX is required.

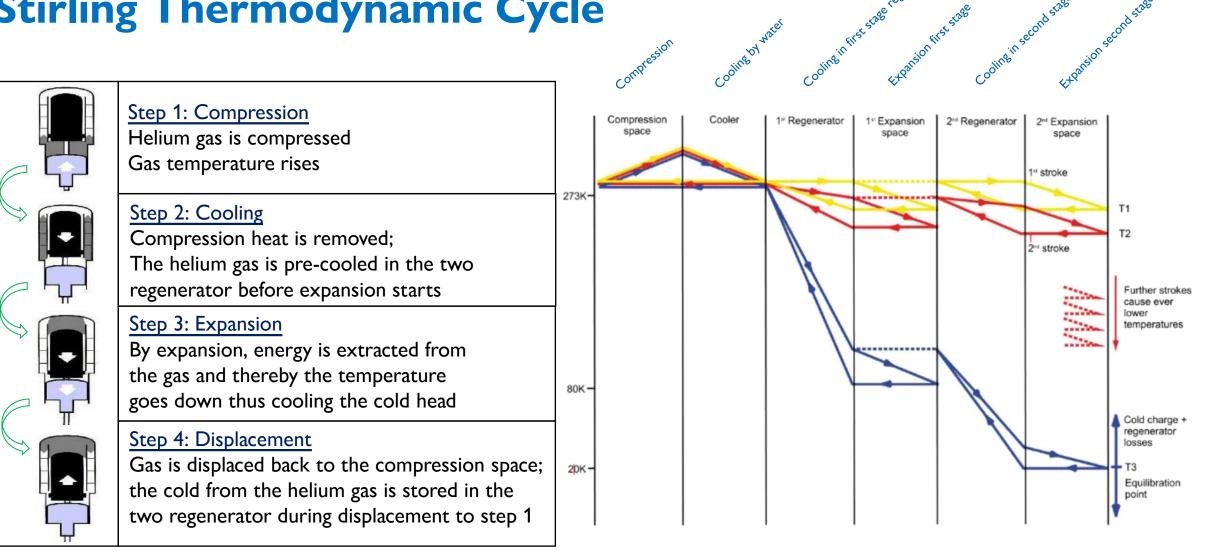




#### Large Set-up Hydrogen Re-Liquefaction





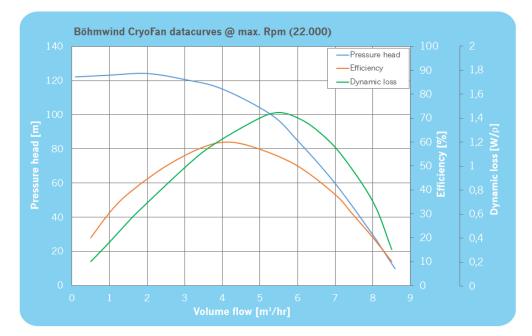

- 6x 4-Cylinder, 2-Stage Cryogenerators each a CryoFan
- Individual start/stop and connection to the main flow by valves

### **Stirling Thermodynamic Cycle**





# **Stirling Thermodynamic Cycle**




#### Range of CryoFans for cold He Loops



- Example: CryoFan type Böhmwind
- Max static pressure 30 barg
- Static heat loss 6W @ 40K
- 4,2 m3/h @ 112 m pressure head; 60% efficiency

| Cryofan<br>model         | Mistra<br>I | <u>Cierzo</u> | Noorden<br>wind | Bohm<br>wind | Bise | Chinook | Nevol | Nodin | <u>Tramo</u><br>n tana | Yeti |
|--------------------------|-------------|---------------|-----------------|--------------|------|---------|-------|-------|------------------------|------|
|                          |             | 4             |                 | £            |      | Ţ       |       |       | Ĩ                      | f    |
| Motor<br>power<br>[W]    | 5           | 12            | 80              | 80           | 340  | 120     | 340   | 340   | 2400                   | 3600 |
| Impeller<br>[mm]         | 20          | 25            | 31              | 42           | 56   | 75      | 75    | 85    | 140                    | 240  |
| Max<br>Efficiency<br>[%] | 56          | 62            | 53              | 60           | 81   | 71      | 71    | 72    | 90                     | 70   |
| Head<br>[m]              | 1,5         | 20            | 35              | 112          | 170  | 200     | 200   | 260   | 800                    | 850  |
| Flow<br>[m³/hr]          | 0,07        | 0,24          | 1,85            | 4,2          | 7,6  | 34      | 34    | 45    | 300                    | 500  |





For further information, please visit our website

www.stirlingcryogenics.eu

Or contact us at info@stirlingcryogenics.eu

